Tuesday, September 30, 2014

Human genome was shaped by an evolutionary arms race with itself

New findings suggest that an evolutionary arms race between rival elements within the genomes of primates drove the evolution of complex regulatory networks that orchestrate the activity of genes in every cell of our bodies.
The arms race is between mobile DNA sequences known as "retrotransposons" (a.k.a. "jumping genes") and the genes that have evolved to control them. The identified genes in humans that make repressor proteins to shut down specific jumping genes. The researchers also traced the rapid evolution of the repressor genes in the primate lineage.
The primate genomes have undergone repeated episodes in which mutations in jumping genes allowed them to escape repression, which drove the evolution of new repressor genes, and so on. The findings suggest that repressor genes that originally evolved to shut down jumping genes have since come to play other regulatory roles in the genome.
Retrotransposons are thought to be remnants of ancient viruses that infected early animals and inserted their genes into the genome long before humans evolved. Now they can only replicate themselves within the genome. Depending on where a new copy gets inserted into the genome, a jumping event can disrupt normal genes and cause disease. Often the effect is neutral, simply adding to the overall size of the genome. Very rarely the effect might be advantageous, because the added DNA can itself be a source of new regulatory elements that enhance gene expression. But the high probability of deleterious effects means natural selection favors the evolution of mechanisms to prevent jumping events.
The jumping genes or "transposable elements" account for at least 50 percent of the human Genome and retrotransposons are by far the most common types. The expansion of this family of repressor genes occurred in response to waves of retrotransposon activity. Because repression of a jumping gene also affects genes located near it on the chromosome, the researchers suspect that these repressors have been co-opted for other gene-regulatory functions, and that those other functions have persisted and evolved long after the jumping genes the repressors originally turned off have degraded due to the accumulation of random mutations.
"The way this type of repressor works, part of it binds to a specific DNA sequence and part of it binds other proteins to recruit a whole complex of proteins that creates a repressive landscape in the genome. The idea that they are involved in repression of jumping genes is not new, previous studies by other researchers have shown that these proteins silence jumping genes in mouse embryonic stem cells. But until now, no one had been able to demonstrate that the same thing occurs in human cells.
The results demonstrated that two human proteins called ZNF91 and ZNF93 bind and repress two major classes of retrotransposons (known as SVA and L1PA) that are currently or recently active in primates. Analysis of primate genomes, including the reconstruction of ancestral genomes, which showed that ZNF91 underwent structural changes 8 to 12 million years ago that enabled it to repress SVA elements.

Experiments with ZNF 93, which shuts down L1PA retrotransposons, provided a striking illustration of the arms race between jumping genes and repressors. The researchers found that, while it is good at shutting down many L1PA elements, there is one subset of a recently evolved lineage of L1PA that has lost a short section of DNA that includes the ZNF93 binding site. Without the binding site, these jumping genes evade repression by ZNF93. Interestingly, when the researchers put the missing sequence back into one of these genes and put it in a mouse cell without ZNF93, they found that it was better at jumping. So even though the sequence helps with jumping activity, losing it gives the jumping gene an advantage in primates by allowing it to escape repression by ZNF93.

No comments:

Latest Pharma - Biotech Jobs

Latest Intellectual Property Jobs

Latest Biotechnology Jobs

BII Blog helps in dissemination of information and knowledge